Inhibitory morphogens and monopodial branching of the embryonic chicken lung.
نویسندگان
چکیده
BACKGROUND Branching morphogenesis generates a diverse array of epithelial patterns, including dichotomous and monopodial geometries. Dichotomous branching can be instructed by concentration gradients of epithelial-derived inhibitory morphogens, including transforming growth factor-β (TGFβ), which is responsible for ramification of the pubertal mammary gland. Here, we investigated the role of autocrine inhibitory morphogens in monopodial branching morphogenesis of the embryonic chicken lung. RESULTS Computational modeling and experiments using cultured organ explants each separately revealed that monopodial branching patterns cannot be specified by a single epithelial-derived autocrine morphogen gradient. Instead, signaling by means of TGFβ1 and bone morphogenetic protein-4 (BMP4) differentially affect the rates of branching and growth of the airways. Allometric analysis revealed that development of the epithelial tree obeys power-law dynamics; TGFβ1 and BMP4 have distinct but reversible effects on the scaling coefficient of the power law. CONCLUSIONS These data suggest that although autocrine inhibition cannot specify monopodial branching, inhibitory morphogens define the dynamics of lung morphogenesis.
منابع مشابه
The intricate network of branched airways of the lung originates as a simple epithelial tube. A sequence of recursive branching events
INTRODUCTION The intricate network of branched airways of the lung originates as a simple epithelial tube. A sequence of recursive branching events then transforms this simple tubular geometry into a complex system of airways that conduct air and promote gas exchange postnatally. In the early chicken embryo, this process is monopodial; that is, daughter branches emerge laterally along the lengt...
متن کاملQuantifying stretch and secretion in the embryonic lung: Implications for morphogenesis
Branching in the embryonic lung is controlled by a variety of morphogens. Mechanics is also believed to play a significant role in lung branching. The relative roles and interactions of these two broad factors are challenging to determine. We considered three hypotheses for explaining why tracheal occlusion triples branching with no overall increase in size. Both hypotheses are based on trachea...
متن کاملFractal branching pattern of the monopodial canine airway.
Unlike the human lung, monopodial canine airway branching follows an irregular dichotomized pattern with fractal features. We studied three canine airway molds and found a self-similarity feature from macro- to microscopic scales, which formed a fractal set up to seven scales in the airways. At each fractal scale, lateral branches evenly lined up along an approximately straight main trunk to fo...
متن کاملOverexpression of Smurf1 negatively regulates mouse embryonic lung branching morphogenesis by specifically reducing Smad1 and Smad5 proteins.
Early embryonic lung branching morphogenesis is regulated by many growth factor-mediated pathways. Bone morphogenetic protein 4 (BMP4) is one of the morphogens that stimulate epithelial branching in mouse embryonic lung explant culture. To further understand the molecular mechanisms of BMP4-regulated lung development, we studied the biological role of Smad-ubiquitin regulatory factor 1 (Smurf1)...
متن کاملEvaluation the Toxicopathological Lesions of Berberis Vulgaris Using a Chicken Embryonic Model
Toxicopathological effects of herbs have always been a major concern. There is scant information available about the toxicopathological effects of barberry in the fetus. Since the embryogenesis in chicken is similar to human beings, the objective of this study is to evaluate the lesions of the various dosages of Berberis vulgaris using a chicken embryonic model. Fertile chicken eggs were divide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental dynamics : an official publication of the American Association of Anatomists
دوره 241 5 شماره
صفحات -
تاریخ انتشار 2012